basic

class aitoolbox.torchtrain.schedulers.basic.AbstractScheduler[source]

Bases: object

Scheduler (callback) base class

All the scheduler callbacks should in addition to AbstractCallback also inherit from this base class. This class serves to indicate to torchtrain components which used callbacks are schedulers and which are just normal callbacks which have nothing to do with learning rate scheduling.

In addition to the above, this scheduler base class also implements the interface methods needed for saving and loading the scheduler state_dict’s when checkpointing and reloading the scheduler.

When implementing the actual scheduler callback make sure to assign the created learning rate scheduler to the self.scheduler class member.

state_dict()[source]
load_state_dict(state_dict)[source]
class aitoolbox.torchtrain.schedulers.basic.GeneralLRSchedulerCallback(scheduler_class, optimizer_idx=None, **kwargs)[source]

Bases: aitoolbox.torchtrain.schedulers.basic.AbstractScheduler, aitoolbox.torchtrain.callbacks.abstract.AbstractCallback

Learning rate scheduler base class

Parameters
  • scheduler_class – PyTorch learning rate scheduler class

  • optimizer_idx (int or torch.optim.optimizer.Optimizer or None) – index or the actual object reference of the paired optimizer when using multiple optimizers

  • **kwargs – learning rate scheduler additional parameters

register_train_loop_object(train_loop_obj)[source]

Modified register_train_loop_object method to support scheduler creation

Parameters

train_loop_obj (aitoolbox.torchtrain.train_loop.TrainLoop) – reference to the encapsulating TrainLoop

Returns

return the reference to the callback after it is registered

Return type

AbstractCallback

on_epoch_end()[source]

Logic executed at the end of the epoch

Returns

None

class aitoolbox.torchtrain.schedulers.basic.ReduceLROnPlateauScheduler(**kwargs)[source]

Bases: aitoolbox.torchtrain.schedulers.basic.GeneralLRSchedulerCallback

Learning rate scheduler which reduces the rate if the loss performance stops improving

Parameters

**kwargs – learning rate scheduler additional parameters

on_epoch_end()[source]

Logic executed at the end of the epoch

Returns

None

class aitoolbox.torchtrain.schedulers.basic.ReduceLROnPlateauMetricScheduler(metric_name, **kwargs)[source]

Bases: aitoolbox.torchtrain.schedulers.basic.GeneralLRSchedulerCallback

Learning rate scheduler which reduces the rate if the performance of the selected metric stops improving

Needs to be used in combination with ModelPerformanceEvaluation to calculate the metric and fill it in the TrainLoop history.

Parameters
  • metric_name (str) – monitored metric based on which the learning rate scheduler modifies the learning rate

  • **kwargs – learning rate scheduler additional parameters

on_epoch_end()[source]

Logic executed at the end of the epoch

Returns

None

class aitoolbox.torchtrain.schedulers.basic.LambdaLRScheduler(lr_lambda, execute_epoch_end=True, execute_batch_end=False, **kwargs)[source]

Bases: aitoolbox.torchtrain.schedulers.basic.GeneralLRSchedulerCallback

Sets the learning rate of each parameter group to the initial lr times a given function

When last_epoch=-1, sets initial lr as lr.

Parameters
  • lr_lambda (callable or list) – A function or a list of functions which computes a multiplicative factor given an integer parameter epoch, or a list of such functions, one for each group in optimizer.param_groups.

  • execute_epoch_end (bool) – should scheduler step be executed at the end of the epoch

  • execute_batch_end (bool) – should scheduler step be executed at the end of each batch

  • **kwargs – learning rate scheduler additional parameters

on_epoch_end()[source]

Logic executed at the end of the epoch

Returns

None

on_batch_end()[source]

Logic executed after the batch is inserted into the model

Returns

None

class aitoolbox.torchtrain.schedulers.basic.StepLRScheduler(step_size, **kwargs)[source]

Bases: aitoolbox.torchtrain.schedulers.basic.GeneralLRSchedulerCallback

Sets the learning rate of each parameter group to the initial lr decayed by gamma every step_size epochs

When last_epoch=-1, sets initial lr as lr.

Parameters
  • step_size (int) – period of learning rate decay

  • **kwargs – learning rate scheduler additional parameters

class aitoolbox.torchtrain.schedulers.basic.MultiStepLRScheduler(milestones_list, **kwargs)[source]

Bases: aitoolbox.torchtrain.schedulers.basic.GeneralLRSchedulerCallback

Set the learning rate of each parameter group to the initial lr decayed by gamma once the number of epoch

reaches one of the milestones.

When last_epoch=-1, sets initial lr as lr.

Parameters
  • milestones_list (list) – list of epoch indices. Must be increasing

  • **kwargs – learning rate scheduler additional parameters